Model: CatBoost Accuracy: 0.9930833333333333 ROC AUC: 0.8528828485636176 Precision: 0.8771929824561403 Recall: 0.7075471698113207 F1 Score: 0.783289817232376 Confusion Matrix: [[11767 21] [ 62 150]] Classification Report: precision recall f1-score support 0 0.994759 0.998219 0.996486 11788 1 0.877193 0.707547 0.783290 212 accuracy 0.993083 12000 macro avg 0.935976 0.852883 0.889888 12000 weighted avg 0.992682 0.993083 0.992719 12000 Model: LightGBM Accuracy: 0.9929166666666667 ROC AUC: 0.8666944638295421 Precision: 0.8432432432432433 Recall: 0.7358490566037735 F1 Score: 0.7858942065491185 Confusion Matrix: [[11759 29] [ 56 156]] Classification Report: precision recall f1-score support 0 0.995260 0.997540 0.996399 11788 1 0.843243 0.735849 0.785894 212 accuracy 0.992917 12000 macro avg 0.919252 0.866694 0.891146 12000 weighted avg 0.992575 0.992917 0.992680 12000 Model: XGBoost Accuracy: 0.9936666666666667 ROC AUC: 0.8601279843268819 Precision: 0.9 Recall: 0.7216981132075472 F1 Score: 0.8010471204188482 Confusion Matrix: [[11771 17] [ 59 153]] Classification Report: precision recall f1-score support 0 0.995013 0.998558 0.996782 11788 1 0.900000 0.721698 0.801047 212 accuracy 0.993667 12000 macro avg 0.947506 0.860128 0.898915 12000 weighted avg 0.993334 0.993667 0.993324 12000 Model: RandomForest Accuracy: 0.9928333333333333 ROC AUC: 0.8365430786665045 Precision: 0.89375 Recall: 0.6745283018867925 F1 Score: 0.7688172043010753 Confusion Matrix: [[11771 17] [ 69 143]] Classification Report: precision recall f1-score support 0 0.994172 0.998558 0.996360 11788 1 0.893750 0.674528 0.768817 212 accuracy 0.992833 12000 macro avg 0.943961 0.836543 0.882589 12000 weighted avg 0.992398 0.992833 0.992340 12000 Model: AdaBoost Accuracy: 0.9885833333333334 ROC AUC: 0.8019548181393296 Precision: 0.7049180327868853 Recall: 0.6084905660377359 F1 Score: 0.6531645569620254 Confusion Matrix: [[11734 54] [ 83 129]] Classification Report: precision recall f1-score support 0 0.992976 0.995419 0.994196 11788 1 0.704918 0.608491 0.653165 212 accuracy 0.988583 12000 macro avg 0.848947 0.801955 0.823680 12000 weighted avg 0.987887 0.988583 0.988171 12000 Ensemble Model Metrics: Accuracy: 0.99375 ROC AUC: 0.8648025494426695 Precision: 0.8959537572254336 Recall: 0.7311320754716981 F1 Score: 0.8051948051948052 Confusion Matrix: [[11770 18] [ 57 155]] Classification Report: precision recall f1-score support 0 0.995181 0.998473 0.996824 11788 1 0.895954 0.731132 0.805195 212 accuracy 0.993750 12000 macro avg 0.945567 0.864803 0.901009 12000 weighted avg 0.993428 0.993750 0.993439 12000 Top Model based on Accuracy: Name: Ensemble Accuracy: 0.99375 ROC AUC: 0.8648025494426695 Precision: 0.8959537572254336 Recall: 0.7311320754716981 F1 Score: 0.8051948051948052 Confusion Matrix: [[11770 18] [ 57 155]] Classification Report: precision recall f1-score support 0 0.995181 0.998473 0.996824 11788 1 0.895954 0.731132 0.805195 212 accuracy 0.993750 12000 macro avg 0.945567 0.864803 0.901009 12000 weighted avg 0.993428 0.993750 0.993439 12000 Top Model saved as 'aps_failure_training_imputed.pkl'