Frequency, Percentage and Group Percentage based on columns 'class, Predicted_class': class Predicted_class Frequency Percentage Group_Percentage 0 neg neg 15608 97.55000 99.891200 3 neg pos 17 0.10625 0.108800 2 pos neg 91 0.56875 24.266667 1 pos pos 284 1.77500 75.733333 Computing Classification Metrics: Target Column Value Mapping: {'neg': 0, 'pos': 1} Accuracy: 0.99325 ROC AUC Score: 0.8781226666666667 Precision: 0.9435215946843853 Recall: 0.7573333333333333 F1 Score: 0.8402366863905324 Confusion Matrix: [[15608 17] [ 91 284]] Classification Report: precision recall f1-score support 0 0.994203 0.998912 0.996552 15625 1 0.943522 0.757333 0.840237 375 accuracy 0.993250 16000 macro avg 0.968863 0.878123 0.918394 16000 weighted avg 0.993016 0.993250 0.992889 16000 Done. Processing data completed. Time Taken: 4.797 seconds Cost computed from Confusion Matrix: Cost 17*500 + 91*10 = 8500 + 910 = 9410